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Abstract: Recently, neuromorphic sensors, which convert analogue signals to spiking frequencies,
have been reported for neurorobotics. In bio-inspired systems these sensors are connected to the
main neural unit to perform post-processing of the sensor data. The performance of spiking neural
networks has been improved using optical synapses, which offer parallel communications between
the distanced neural areas but are sensitive to the intensity variations of the optical signal. For systems
with several neuromorphic sensors, which are connected optically to the main unit, the use of optical
synapses is not an advantage. To address this, in this paper we propose and experimentally verify
optical axons with synapses activated optically using digital signals. The synaptic weights are
encoded by the energy of the stimuli, which are then optically transmitted independently. We show
that the optical intensity fluctuations and link’s misalignment result in delay in activation of the
synapses. For the proposed optical axon, we have demonstrated line of sight transmission over a
maximum link length of 190 cm with a delay of 8 µs. Furthermore, we show the axon delay as a
function of the illuminance using a fitted model for which the root mean square error (RMS) similarity
is 0.95.

Keywords: optical neural networks; optical axons; optical signal fading; VLC

1. Introduction

In recent years, several algorithms for machine learning-based stream learning have been
reported in the literature. However, in dynamic and evolving environments, most reported models
require retraining of the learned algorithms, which is not desirable. Artificial neural networks
(ANNs), which mimic the human brain’s process of acquisition and processing of sensory information,
have received a great deal of attention for a range of applications. Within this context, spiking neural
networks (SNNs) have emerged as the most successful approach to model the behavior and learning
features of biological neural networks (NNs), and to represent and integrate information in time,
space, frequency, and phase domains. The SNN benefits from the increased computation power and
accuracy compared with other types of NNs, including the traditional ANNs [1,2]. This is because
an SNN operates based on discrete events (i.e., precise timing spikes), which make it sensitive to
time-varying functions and random occurrence of events [3]. The SNN is potentially best suited for
hardware implementation [4–6] because it is based on parallel operation using a significant number of
high complexity neurons with the simple “integrate-and-fire” feature. In addition to the benefit of
higher biological plausibility [7], a hardware-based SNN offers very low energy consumption [8–10]
and efficient decoding of the data generated by event-based sensors [3].
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Typically, spiking neurons (SNs) model the key characteristics of the neural cells, which are used for
information processing and adaptability. These characteristics are (i) the spiking behavior, integration
of the incoming stimuli, detection of the activation threshold, refractory period, and generation of
excitatory or inhibitory stimuli; and (ii) properties related to the synaptic plasticity that include the
long-term potentiation and depression, which increases or decreases the synaptic weights ws [11].
Typically, the communication between SNs is performed using the discrete stimuli, in which the intensity
of the postsynaptic response depends on ws [11]. Implementing the SNs in the analogue hardware
domain enables parallel transmission of multiple colors (i.e., wavelength division multiplexing (WDM))
between neurons [12]. Optical neural networks (ONN) have been investigated offering a number of
features including (i) the computational power of the neuromorphic hardware; (ii) high processing
speed and energy efficiency [13–16]; (iii) use of the license-free optical spectrum (i.e., ultraviolet, visible,
and infrared bands); and (iv) lower crosstalk and immunity to radio-frequency induced electromagnetic
interference [17].

The photonic technology was first introduced in hybrid feed-forward NNs [18–20]. Recently,
all-optical neurons with sigmoid or Softplus activation functions were reported in [21,22], whereas in [23]
the backpropagation algorithm was used to adjust the weights of all-optical synapses. In addition,
significant research activities on the implementation of optical communications between different types
of optical spiking neurons were reported in [24,25]. Following the first demonstration of the integration
of a small all-optical NN in silicon [26], more studies of implementations of all-optical synapses [27–29]
have been published. Because adaptability is an important feature of NNs, the main goal of the
design of optical synapses is to model the biological learning rules. Such adaptable synapses are
based on electro-absorption modulators [30], memristors [31], and photoconductive materials, such as
graphene with carbon nanotubes [32], amorphous oxide semiconductors [33], and carbon nanotube
field-effect transistors [34]. In [35], the adaptive optical synapses were implemented using an organic
photosensitive material that stimulates contractile artificial muscles in response to light intensity.

In NNs, the role of synapses is to transmit weighted signals to the postsynaptic neurons
(posts). In early models of electro-optical neurons (EON), which were used in computational NNs,
ws were transmitted using light intensity modulation (LIM) [18–20]. This concept was adopted
later in significantly faster photonic neural networks (PNNs) using the silicon photonic weight
banks [13], [36]. In advanced PNNs, the photonic spike processing is performed using ultrafast
laser neurons [16,37], in which adjustable ws are implemented using different types of tunable silicon
micro-ring resonators [38]. Note, in LIM-based ONNs the optical signal level is substantially reduced
following transmission over several nonlinear layers, which can be mitigated by means of optical
amplification [39]. Similarly, in free space-based ONNs, the weighted signal is affected by the light
intensity fluctuations during propagation, which depends on the transmission span. One possible
option to mitigate the effect of intensity variation is to use electro-optical synapses, in which ws is
encoded within the optical pulse width [12]. However, the stray capacitance of transistors affects
transmission of lower values ws.

In this work, we introduce a novel concept of an optical axon (OA) for implementation of
electro-optical SNNs, which uses optical wireless transmission between neural areas. The proposed
optical axon overcomes the disadvantage of transmitting the weighted optical signals [39]
(i.e., reduced implementation complexity of online learning mechanisms) and improves the ONN’s
tolerance to the variation of light intensity. The OA can be used in optical connections to the upper neural
layers of mobile neuromorphic sensors for conversion of analogue inputs into the spiking frequency [40].
Analog-to-spike conversion has been used in the implementation of neuromorphic sensors in artificial
olfactory systems [41–43] and in tactile sensors based on memristors [44]. Other neuromorphic sensors
have been used for (i) control of the contraction force of shape memory alloy actuators [45]; and (ii)
rotation control of robotic junctions [46].

To validate the OA, we used an ONN, in which both ws and plasticity are implemented in
the analogue hardware domain, and visible light communication (VLC) for axonal transmission.



Sensors 2020, 20, 6119 3 of 14

For quantifying the impact of the free space channel on ONN, we propose a novel model for estimation
of the axon’s delay based on the amount of light being converted into an electrical signal. It should be
noted that: (i) the work is focused on increasing the communication range between the neural areas
and not on the implementation of ultrafast NNs; and (ii) analogue neurons, which operate in the kHz
range, are a cost-effective option.

The remainder of the paper is organized as follows: Section 2 details the schematic of the OA
and the EON modules. Sections 3 and 4 present the experimental setup for validating the OA and
the obtained results. The influence of the axon delay on the SNN’s activity is evaluated in Section 5,
which is followed by a discussion section related to the possible use of optical axons in significantly
faster SNNs. The paper ends with the conclusions.

2. Electro-Optical Spiking Neuron

Figure 1 shows the basic structure of the EON implemented in analogue hardware, which includes
an electronic soma (SOMA) for information processing, and at least one electronic synapse (SYN),
which are used for weight storage and adaptability. The SOMA and SYN are connected optically
by an OA for transmitting the trigger signals for activating the synapses. The electronic synapse,
which transmits the weighted signals, is hardwired to the SOMA in order to reduce the effect of the
optical induced noise sources. The SOMA and SYN represent the main elements of a bioinspired
neuron model, which were implemented in analogue hardware reported in our previous work [47,48]
and is adopted in this work.

Figure 1. The general structure of the electro-optical neuron (EON) that includes a SOMA connected
through the optical axon (OA) to a SYN.

A number of different forms of neuromorphic hardware with bioinspired plasticity rules have
been reported in the literature [49], including the neuron model used in this work [47]. The SOMA
models the integration of input stimuli detection of the activation threshold and refractory period as
in [12], and the spike generation and the plasticity mechanisms are modeled by the SYN [47]. Note that
in our previous work [12] the optical channel was implemented between the SYN output and the
postsynaptic SOMA input, whereas in the current research the optical connection is between the SOMA
output and the SYN input.

2.1. The Analogue Modules of the EON

Figure 2 presents the schematic circuit diagram of the SOMA and SYN in which the axon is
hardwired as in the original neuron design [47,48]. According to Figure 2a, during the neuron idle
state, the voltage level VIN across the capacitor CM is set to VEQU, which represents the equilibrium
voltage of the artificial neuron.
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Figure 2. The schematic of (a) the electronic SOMA and (b) the electronic synapse.

On activation of the SOMA, VIN reaches the neuron activation threshold voltage VTH, which for
this neuron model is the transistor T1 base-emitter voltage VBE. During activation, the SOMA generates
an active low pulse with a fixed width at SOUT for triggering, i.e., the SYNs which are connected to its
output. The pulse width is determined by the capacity CR which is fully discharged during the neuron
idle state. The discharge of CR determines the saturation time of T1 following the time interval ∆tN for
all neuron activations. Note, the initial charge of CR does not change with fN, therefore the saturation
time of T1 and consequently the activation of OA are delayed by ∆tN.

The input voltage across RE is given by:

VIN = V0 +
(
Vcharge −V0

)(
1− e−

t
τC

)
(1)

where V0 is the initial voltage across CM, τC = RECM, Vcharge = (VPRE
E − VEQU)RM/(RE + RM),

and VPRE
E is the amplitude of the excitatory spike. The inhibitory stimulus (for which amplitude is

typically VPRE
I < VEQU) is described by:

VIN = Vdischarge + (V0 −Vdischarge)e
−

t
τD (2)

where τD = RICM, RI is the emitter resistor of T5, and Vdischarge =
(
VEQU −VPRE

I

)
RI/(RI + RM) is the

discharge from CM. Note, if the SOMA is not activated, the equilibrium value of VIN is restored via RM.
Considering that the analogue modules of the EON use transistors with β = 400, the model is

then simplified for the case in which transistors are in the saturation or cut-off modes. During SOMA
activation and when T1 is in the saturation mode, CR is charged until T1 is blocked. Thus, CR, RRU,
and RRD determine the duration of the SOMA activation. At the same time, CM is discharged through
RF to the forward voltage VSCH < VBE of the Schottky diode. This mimics the behaviour of the neural
cell input potential, which is below the equilibrium voltage following activation. When the SOMA is
activated, VU is pulled to VU0, which varies with VL (i.e., the voltage stored in the learning capacitor
CL), as shown in Figure 2b.

Note that VL, which represents the synaptic weight, determines the saturation period of T4 and
consequently the generated spike duration and its energy. This excitatory output is given by:

VE =

{
VSPK, if VU < VDD −VEB

VPOST
IN , otherwise

(3)

where VSPK = VDD for typical operation frequencies in the range of kHz, VPOST
IN is the input potential

of the post connected to NOUT, and VEB is the emitter-base of T4. Note, with reference to Figure 2b the
capacitor CF is discharged completly via RF during neuron activations thus maintaining the spike’s
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amplitude. However, using a set of RF and CF, the spike’s amplitude can be reduced due to the high
activation frequency thus leading to reduced frequency of the postsynaptic neurons. From the biological
point of view, this behavior of the electronic neuron can model the spike-frequency adaptation of the
natural neurons, which shows a decrease in the spiking frequency of neurons following long activation
periods [50,51].

The excitatory spike is converted into an inhibitory stimulus by an additional transistor T5

connected as in Figure 2b. Considering that the response time of T5 is negligible, the inhibitory output
is given as:

VI =

{
0, if VU < VDD −VEB

VPOST
IN , otherwise

(4)

Each SYN generates a spike at their output i.e., NOUT, which can be excitatory or inhibitory
depending on the position of the switch S. Note that, from the biological point of view, a neuron can
include only excitatory or inhibitory synapses and not both. Thus, S is in the same position for all
synapses in the AN. Taking into account that a neuron includes at least one synapse, T3 included in the
first SYN, see Figure 2b, is used instead of T2 as shown in Figure 2a.

For this neuron model, increasing wS implies increasing/deceasing VL with decreasing/increasing
wS (i.e., increasing the energy of the generated pulse). During neuron activation, VL decreases via
RLU + RLD, thus modeling the post-tetanic potentiation of the biological synapses. This presynaptic
element of the synaptic plasticity represents weight adjustment when the neural cells are activated [52].
Furthermore, VL decreases when the postsynaptic activity occurs shortly after the activation of the
SYN in concordance with the biological long-term potentiation [53]. This mechanism is implemented
using CA, which temporarily discharges CL by ∆Q. During the idle state that follows the neuron
activation, the charge ∆Q is transferred back to CL if the post remains inactive. When the post is
activated, the remaining ∆Q stored in CA is discharged through the input SLTP, which is connected to
SOUT of the postsynaptic SOMA. Note, the circuit AUX in Figure 2b is used to keep T6 open until ∆Q
is discharged.

2.2. The Proposed OA

The concept introduced in this paper represents the OA, which is adapted to implement
communication between distanced neural areas and to increase ONN operation tolerance to the
beam intensity fluctuations. The OA structure shown in Figure 3 replaces the hardwired axon,
which connects the SOMA to SYNs. At the transmitter (Tx), the OA includes a LED panel, which is
intensity-modulated by the signals from the SOMA via the p-channel MOSFET transistors and the load
resistor as in Figure 4a. At the receiver (Rx), an optical Rx (ORx) is used to regenerate the electrical
signal, which is amplified and passed through a timer module for use by the SYN.

Figure 3. The general structure of the OA including the LED panel at the Tx and the optical Rx,
amplifier and timer on the Rx side.
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Figure 4. (a) The SOMA drives the LEDs using p-channel MOSFET transistors and (b) the Rx including
the optical Rx and the additional circuitry that generate fixed-width pulses for SYN.

Note, the synaptic weight determines the generated pulse width Ts, therefore the duration TW

of the SYN activation signal is critical. To reduce the changes (time jitter) in TW due to the channel
induced perturbations, the electronic synapse is activated by a timer NE555; see Figure 4b.

3. Experimental Setup

We developed an experimental testbed as shown in Figure 5 for evaluating the performance
of the proposed system, in particular, the OA’s tolerance to the optical transmission range and the
link misalignment. The system, with the key parameters given in Table 1, is composed of two OAs
(i.e., OABLUE and OARED) for connecting two somas, SOMAB and SOMAR, to a synapse SYN, timer,
SNN, optical filter, and ORx (Thorlabs PDA100A2).

Note, two SOMAs are used for activating the OA’s transmission wavelengths, OR’s sensitivity,
and the drive current and illuminance for the LEDs. The SNN comprises SYNs and SOMAs, which are
controlled by a microcontroller (µC). Experiments were performed in an indoor environment with an
artificial room illuminance level of between 440 and 462 lux; see Table 1. At the receiving end, we used
an optical filter to reduce the ambient light and therefore improve the signal-to-noise ratio. In [12,38],
WDM systems with filters for parallel transmissions between optical neurons were reported, whereas a
less costly version of WDM without filters was recently introduced in [54].

The output of the ORx is further amplified prior to being converted into a positive pulse with a
fixed Tw using NE555; Figure 4b.

Figure 5. The experimental setup.
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Table 1. System parameters.

Parameter Value

LEDs (CREE XLamp ML-E)
• View angle 125◦

• Red—Wavelength, drive current, 640 nm, 178 mA,
Illuminance Einit

V for 10 cm channel length 460 lux

• Blue—Wavelength, drive current, 465 nm, 146 mA,

Illuminance Einit
V for 10 cm channel length 252 lux

Optical channel length for Einit
V 10 cm

Optical filter (Edmund Optics)

• Red—Centre λ, FWHM, Transmittance 634 nm, 71 nm, 93%

• Blue—Centre λ, FWHM, Transmittance 470 nm, 85 nm, 95%

ORx (Thorlabs PDA100A2)

• Gain (HiZ) 4.75 × 106 V/A ±5%

• Bandwidth 3 kHz

• Responsivity (A/W) 0.25 (B) and 0.45 (R)
• Sensitivity 340–1100 nm

VDD and VCC 1.6 and 4.5 V

Room illuminance from the artificial source 440–462 lux.

4. Results

The goal of the experiments was to evaluate the influence of the link length LOA on the OA
operation and how the system operates considering the link misalignment. The operation of the
OA was analyzed independently for the red and blue LEDs using the same Rx. Because the spikes
are transmitted using laser light sources in recent ONNs [13,36,37] due to speed, in this research we
used LEDs due to the larger field of view which increases the tolerance to the link’s misalignment.
The presented results are valid for OAs if activated simultaneously because the optical filters are used
for channel isolation at the Rx. The two SOMAs are activated by a µC at sufficiently long periods when
the SOMA’s input reaches the equilibrium voltage.

4.1. Delay Induced by the OA

Because spike timing is the critical parameter in the SNN and SNs are temporal coincidence
detectors, we measured the variation of the axon delay considering the link length and misalignment.
Figure 6a shows the recorded signals when SOMAR activates the synapse SO through the OA,
which generates a 47.4 µs long pulse delayed by dT. Each value of dT was obtained for five consecutive
measurements performed using the persistence function. Based on the data measured using the
oscilloscope, the maximum jitter of the axon delay due to the optical channel is less than 0.4 µs for the
maximum link span of 190 cm. The axon delay is determined by the beam intensity, which depends
on the optical link length and the misalignment angle between the Tx and the Rx. For the evaluation
tolerance of the OA on the link misalignment, the Tx was rotated at steps of 10◦ while the Rx was
kept fixed.
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Figure 6. (a) The measured time signals showing the soma output (upper signal) and the synapse input
(lower signal), which is delayed by dT, and (b) the axon delay vs. αOA for the red and blue LEDs and
for LOA = 50 cm.

Figure 6b shows the variation of OA delay as a function of the rotation angle αOA for an optical
link length LOA of 50 cm. Note, due to the symmetric beam profile, the Tx is rotated in only one
direction. The maximum misalignment angle is αOA = 60◦, which is lower than half of the LED’s
viewing angle αview of 125◦. This implies that at least three LEDs should be used to provide 360◦

coverage. As shown, the OA delay increases exponentially with αOA, with the blue LED displaying
higher delays. Next, we investigated the delay dT as a function of the optical link span LOA for both
LEDs for αOA of 0◦ and 60◦, as shown in Figure 7a. For αOA of 0◦ and maximum LOA, the measured
dTs are 8 and 4.2 µs for the blue and red LEDs, respectively.

Figure 7. (a) The delay dT vs. the optical link length LOA (full line) for the aligned blue and red channels.
The calculated axon delay for the maximum misalignment angle αOA = 60◦ (dotted line). (b) The
graphical representation of the relation between the photocurrent I and the delay dT, respectively,
for the red channel (red line and dots) and the blue channel (blue line and dots).

Note that the predicted axon delay dTL
predicted for αOA = 60◦ and variable LOA was determined

using the measured beam profiles for LOA and αOA, which is given as:

dTL
predicted =

dTαOA=60◦

measured

dTαOA=0◦

measured

dTL
measured (5)

where dTL
measured is the delay for αOA = 0◦ and variable LOA. For the line of sight link the maximum

measured delay dTmax = 8 µs, thus the axon may not be operational for LOA > 170 cm and αOA = 60◦,
where the predicted delay is above dTmax; see Figure 7a. dTmax for the red channel is significantly
lower than that of the blue channel. This is due to the higher irradiance level of the red LED and higher
responsivity of the ORx at red wavelength; see Table 1.
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4.2. Model for the Axon Delay

The axon delay was estimated by developing a model based on illuminance EV that fits dT. Thus,
knowing EV the photocurrent in terms of the photopic efficacy Vλ and the Rx’s responsivity, η can be
determined as:

IPD =
EV

683 Vλ
η (6)

In addition, the measured dT has a component denoted by dTbias, which does not depend on EV.
This delay is given by the response time of the electronics used between OR and SYN; see Figure 4b.

Because the Rx response depends on IPD, we have the following functions as shown in Figure 7b:

f = β+
α

dToptical
and g = ln(IPD), (7)

where dToptical = dT − dTbias and the parameters α and β are used for scaling 1/dToptical on ln(IPD),
which are given as:

α =

(
gmax − gmin

)[(
1/dToptical

)
max

–
(
1/dToptical

)
min

] and β = mean
(
α/dToptical

)
−mean(g) (8)

The illuminance EV was determined for LOA = 5, 10, 30, . . . , 190 cm using Einit
V , which was

measured for LOA = 10 cm; see Table 1. Note the high similarity between f and g, for which the root
mean square error (RMS) values are 0.98 and 0.95 for red and blue LEDs, respectively. Thus, the delay
introduced by the OA is given by:

dT =
α

ln(Ee) − β
+ dTbias, (9)

where αR = 4.8 and βR = 6.58 for the red channel, and αB = 6.4 and βB = 6.65 for the blue channel.
The delay that yields the best RMS for both wavelengths is dTbias = 0.5 µs. This value is practically
plausible considering the parameters of OR, LM111, NE555, and BC848 that are used to activate
the synapse.

5. Axon Delay Influence on Neuron Activity

In this section, we determined the tolerance of the SNN to the maximum axon delay. Typically,
wireless communications are suitable for neural areas that are connected via OAs. To determine
whether the delays affect SNN behavior, we implemented a network that includes two electronic
synapses (SYN1 and SYN2), which stimulate a SOMA; see Figure 8a.

Figure 8. (a) Structure of the spiking neural network (SNN), which includes two synapses and a soma
for testing the influence of the axon delay on the activations of the neurons; (b) the microcontroller was
programmed to generate delays dT between pulses that activate two synapses through inputs S1ACT

and S2ACT.
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To simplify the test process and to ensure repeatability of the results, the synapses were activated by
pulse trains with different delays dT generated using a microcontroller (see Figure 8b), which simulates
the axon’s output. The activity of the postsynaptic neuron was evaluated by monitoring the SOMA
activation period TS for dT in the range of (0, 8.4 µs) with a resolution of 0.7 µs. The measurements
show that, for the maximum dT, TS increases by less than dTS = 8 µs. The natural neurons operate
typically at a few tens of Hz [55] with the maximum frequency fBRAIN = 453 Hz observed in the human
brain [56]. This gives the minimum time interval between neuron activations of TBRAIN = 2.2 ms.
Note, dTS is less than 0.5% of the inter-spike period TBRAIN, implying that the influence of the axon
delay on the biologically plausible frequency of spiking neurons is negligible.

6. Discussions

The results show that light intensity fluctuations do not influence the duration of the SOMA
activation, thus lessening the effects on transmission of synaptic weights. During the experiments,
the light intensity varied significantly (i.e., by two orders of magnitude), which implies that
implementation of LIM is not feasible because it directly converts the synaptic weights into light
intensity [13,36]. Note that an ONN based on spiking neurons typically converts the synaptic weights
into the spikes’ amplitude and duration [12], therefore conversion of spikes into optical pulses will be
susceptible to light intensity fluctuations. This is because changes in the amplitude of the optical pulse
means modified synaptic weights.

Conversely, the OA induces a delay, which depends on the optical channel characteristics
(i.e., length, alignment, and components) that affect the SNN operation by changing the frequency
of the spiking neurons, thus affecting the polychronization of the SNN [57]. Recent research shows
that the precision of electronic neurons can be as low as 50 ns in the detection of temporal stimuli [58].
This order of magnitude for OA delay can be reached using faster electronics. As an example, dT can
be reduced below 30 ns for OPL = 1 m (tp = 3.3 ns) using the ultrafast Tx with the response time
tr < 6 ns [59], in addition to a fast Rx implemented with FPD310 (tr < 0.5 ns), comparator LMH7220
(tr < 7 ns), and fixed-width pulse generator based on ultra-fast logic gates (tr < 9 ns); see the OA
structure in Figure 1. However, because increasing the communication distance between neural areas
results in non-compensable delays, one possible option to reduce the OA influence on the SNN would
be to decrease the neuron’s frequency. Low-speed analogue hardware platforms will increase the
tolerance of the SNN to the increased transmission spans. The possible applications that can benefit
from the proposed optical axons are bio-inspired systems, including neuromorphic sensors [4,40],
with a built-in preprocessing neural layer. The tolerance of the OA to the variation of the channel length
and link misalignment makes the OA suitable for exploration applications in which neuromorphic
sensors are mobile. In addition, the OA could be used in the implementation of brain–computer
interfaces [60] or in the recently tested brain-to-brain communications [61,62].

In practical applications, the maximum number of inputs nIN and outputs nOUT of the system
will determine the number of parallel free space channels (i.e., free space with WDM) that could be
used. For the single-color LED-based Txs, nOUT is determined by the number of available wavelengths
within the range of 250–1650 nm. Note, higher nIN and nOUT (i.e., up to 70) can be employed by
using a combination of broad-band LEDs and narrow-band optical bandpass filters (OBPF), and a
high-bandwidth PD. However, because of the limited dynamic range of the optical Tx and Rx and their
dependency on λ, in addition to system complexity, about 35 channels should be used.

7. Conclusions

A common method to encode synaptic weights in optical neural networks is light intensity
modulation. In free space-based ONNs, the weights are affected by beam fading due to variation in the
distance between neural areas. This paper presented the theoretical and practical implementation of a
new and efficient method to significantly reduce the effects of beam fading in free space optical-based
neural networks. The proposed method is based on optical axons, which eliminate the requirement



Sensors 2020, 20, 6119 11 of 14

for synaptic weight transmission over the free optical channels. OAs could be used to implement
the optical connections in multi-modular bioinspired systems, which include mobile neuromorphic
sensors. For testing this novel concept, we determined the delay induced by two OAs with different
parameters. Results showed that the delay is significantly influenced by the axon parameters of light
intensity and the responsivity of the optical Rx. Thus, based on experimental data we developed a
model to estimate the delay as a function of illuminance. The maximum axon length and the delay
achieved were 190 cm and 8 µs, respectively, for the line of sight transmission. It was shown that the
influence of the axon delay on the biologically plausible frequency of spiking neurons is insignificant
for the considered SNN that operates in the kHz range. For faster SNNs, lower values of OA delay can
be achieved using high-speed electronic circuitry. However, OA integration in ultrafast photonic NNs
has limitations determined by the speed of light.

In future work we will (i) carry out testing and measurement of the associative learning mechanisms
with optical axons used in ONNs, and increase the number of channels; and (ii) focus on the evaluation
of an anthropomorphic robotic arm with the neuromorphic rotation and force sensors connected
optically to the main SNN.
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Nomenclature

Short Form Description
AN Artificial neuron
ANN Artificial neural networks
BPOF Band pass optical filters
EON Electro-optical neurons
FWHM Full width half maximum
LED Light emitting diode
LIM Light intensity modulation
OA Optical axon
ONN Optical neural networks
OR Optical receiver
PD Photodiode
PNN Photonic neural networks
Rx Receiver
SNN Spiking neural networks
SOMA Input module of the electronic neuron
SYN Electronic synapse
Tx Transmitter
ws Weights
WDM Wavelength division multiplexing
µC Microcontroller
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